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ABSTRACT 
 

The contribution is directed to providing accurate simulation and approximation of the Q-factor determined by thermal-
elastic damping in complex micro-electromechanical (MEM) resonators. The base model created is presented as a 
system of partial differential equations, which describe the elastic and thermal phenomena in the MEM structure. The 
FEM calculations were performed by using COMSOL Multiphysics software. The model was verified by comparing 
numerically and analytically obtained damped modal properties of a MEM cantilever resonator. The comparison of 
calculated and experimentally obtained resonant frequencies and Q-factor values indicated a good agreement of 
tendencies of change of the quantities against temperature. Investigation of longitudinal and bending vibration modes in 
3D of a beam resonators was accomplished by taking into account the layered structure of the resonator and the influence 
of the geometry of the clamping zone. Modal properties of rectangle- and ring-shaped bulk-mode MEM resonators were 
examined, too. 
The research was supported by NATO RTO; projects LTU-AVT-05/1 and LTU-AVT-07/1.  
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1. INTRODUCTION 
 
The scope of MEMS is expanding rapidly. Besides traditional MEMS, many new frontiers of practice were opened up in 
recent years1. The most advanced solutions in terms of MEMS sensors, actuators, mechanical filters or microfluidic 
systems can be identified in inertial navigation systems, computer devices, industrial process control, electronics 
instrumentation, telecommunications as well as in biological and medical applications.  
Advances in electronic-mechanical integration of sensors and utilisation of powerful sensor fusion and navigation 
algorithms have made possible the embodiment of a wide variety of solutions (with an integrated navigation capability) 
for tracking and navigation of small platforms for lengthy periods2. However, size, weight, cost and power issues remain 
limiting factors for near-term incorporation of such devices in applications in which space and power are limited. In 
particular, MEMS inertial measurement units (IMU) drift rates are still too high for use without GPS or another source of 
position updates.  
To improve system performance the ways are being explored for reducing the physical dimensions, weight, power 
dissipation and noise as well as for increasing sensitivity and accuracy of both mechanical microstructures and electronic 
components by using innovative combinations of low-power circuits and micromechanical devices3,4. 
In many applications, the benefits of using MEM resonator structures relate directly to the small size, the (relatively) 
high frequency and the spectral purity. The latter quantity is defined by high values of the mechanical quality factor, the 
Q-factor. The damping rate of the vibrations can be evaluated as 1Q− , which is the rate at which energy of resonant 
vibrations is being lost to various environments coupled to the resonator.  
As an illustration of this viewpoint, an example can be given of the JPL MEMS gyroscope effort that has been aimed at 
achieving comparable performance to optical gyroscopes while retaining all the advantages of MEMS devices5.  
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High-quality factor quartz disc resonators have been fabricated with Q’s ~50x greater (i.e., Q ~ 8 x 105) than silicon 
resonators of the same geometry, enabling increased device sensitivity of any resonant vibratory MEMS device. 
The vibrations of actual resonator structures are affected by several different energy loss mechanisms, which 
predetermine the overall value of the Q-factor. Unfortunately, the physical mechanisms of dissipation affecting the Q-
factor values of micro-resonators are still not completely understood. It appears that in-depth theoretical models and 
analysis are needed to reveal underlying different energy loss mechanisms and to determine the dominating energy 
dissipation processes. Several studies6-15, have examined the different dissipation mechanisms, as well as, the 
dependence of the Q-factor on various parameters in both flexural and longitudinal vibration modes of MEMS structures.  
In particular, the Q-factor determined by thermo-elastic damping (TED) of MEM resonator structures, designated as 
QTED, is a very important dynamic characteristic since it provides the upper limit of the overall Q-factor that can be 
attained in a structure of a given geometry and materials under the assumption that no internal friction losses and other 
sources of damping are present.  
In9 the TED of the single-crystal 3C-SiC UHF nano-mechanical rod resonators at longitudinal vibration mode have been 
investigated. The TED was studied for thermally insulated boundary conditions as well as for fixed temperature 
boundary conditions. The QTED was determined for these conditions. The results from this research were used for the 
development and verification of FEM computational models6-8.  
In10 an extensive study of vibration energy loss mechanisms, which limit the highest achievable Q-factor values, is 
presented. The damping mechanisms are highly influenced by the design of the resonator structures. The authors have 
included energy loss mechanisms due to support clamping, air damping, heating, TED dissipation, anharmonic mode 
coupling, surface roughness, extrinsic noise, dislocations and dissipation due to two-level systems. Dependence of 
dissipation has been analyzed for dependence on finite size of the structure, temperature, surface-aggregated defects, 
magnetic field, and hysteresis amongst other factors. The authors present data on dissipation measurements for micron-
sized single crystal GaAs and Si resonators.  
In11 intrinsic and extrinsic energy loss mechanisms have been discussed and dissipation in polycrystalline diamond 
(poly-C) resonators has been explored by using electrostatic and piezoelectric actuation methods.  
An effort to delineate the microscopic mechanisms predominantly responsible for dissipation in micromechanical 
resonators has been presented in12. Possible mechanisms contributing to dissipation in a double-clamped beam ultra-high 
frequency (UHF) nano-resonators have been analyzed in13. Estimation of the dissipation contributed by the evaporated 
metallic layers (Al and Ti) with internal friction has been presented in14. 
In the aforementioned studies the numerous approaches to the damping theory and experiments have been systematically 
developed and reported over several decades, but advanced modeling and simulation seem lacking whereas these are still 
of relevance in order to provide „advisory service“ at early stages of MEMS design. The numerical simulation is 
important for two reasons. Firstly, it can be used to verify the analytical results, which often are obtained on the base of 
highly simplified models. And secondly, for complex geometries or stacks of multiple materials there are simply no 
analytical approximations. Therefore, for these cases, numerical simulations are still necessary.  
This work presents the study of TED as a dissipation mechanism in modal damping of vibrations of MEMS resonators 
by taking into account the layered structure of the resonator and the influence of the geometry of the clamping zone. The 
dissipation was studied by performing numerical simulations in a finite element package.  
The numerical model was verified by relating the simulated data to measurements of SOI-based resonators. Modal 
properties of square- and ring-shaped bulk-mode MEM resonators were examined, too. The verification demonstrated a 
reasonable agreement between computationally determined features and physical measurements. 

 
 

2. MEMS MODELLING 
 

Throughout the course of the project LTU-AVT-05/1 (2006-2008) and LTU-07/1 (2009-2011) a method and model were 
developed to MEMS dynamic performance assessment, where the problem of the thermo-elastic damping of MEMS 
resonators was addressed. The thermal-mechanical coupling has been ensured by entering both the body heat source, 

which described the generation of the heat in the volume at given strain rates as 0
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( , , ), ( , , ), ( , , )u x y z v x y z w x y z  are displacements of the MEM resonator structure at location ( ), ,x y z , E - stiffness (or 
Young’s) modulus, σ  - Poisson’s ratio, α - thermal expansion coefficient, 0T - ambient temperature.  

The model enabled us to take into consideration the TED effect and the influence of the geometry of the clamping zone. 
The mechanically free surfaces of the resonator were assumed to be thermally isolated. The assumption was based on 
the fact that the heat exchange rate through the surface is too slow to be comparable with the quick internal processes of 
acquiring and loosing heat caused by high rates of elastic strain. The fixed temperature boundary conditions as 0T T=  
were imposed on cut-boundaries, which represented the contact of the resonator with the anchors and with the substrate. 

The finite element model is presented as a system of structural dynamic equations. The second order differential 
equation system has been transformed to the first order one by performing substitution { } { }=V U& , where { }U  is the 
nodal displacement vector. The eigenvalue problem, from which structural modes of the MEM resonator were 
calculated, reads as 
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where [ ]M , [ ]K  - mass and stiffness matrices; 1 2[ ] [ ] [ ]a a= +C M K - the proportional damping matrix with coefficients 

1 2,a a ; [ ]TC  - heat capacity matrix; [ ]TK - heat conductivity matrix; [ ]H  - thermal-elasticity matrix. 
After eigenvalue problem (1) is solved, the obtained complex eigenvalues define the Q-factor of the structure as 
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The numerical analysis techniques developed along with experimental methods allow for a comprehensive 
characterization of laminated MEMS structures. During the project LTU-AVT-07/1 a new FE model was developed in 
order to evaluate the thermal-elastic damping in SiO2-Si-Cu cantilever beam. The distribution of amplitude values of 
temperature at 1st in-plane and 3rd out-of plane bending modes of the beam vibration are depicted respectively in Fig 1 
and Fig. 2.  

 
     Figure 1. The distribution of amplitude values of temperature at 1st in-plane mode of the SiO2-Si-Cu cantilever beam. 

 
     Figure 2. The distribution of amplitude values of temperature at 3rd out-of plane bending mode of the SiO2-Si-Cu cantilever beam. 
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The dependencies of modal frequencies and quality factors of the MEM resonator on the lamina thickness are shown in 
Fig. 3 and Fig. 4.  
 

 
 

     Figure 3. Modal frequencies of the MEMS resonator vs. the lamina thickness. 
 

 
 

     Figure 4. Modal Q-factors of the MEMS resonator vs. the lamina thickness. 
 
 

3. MODEL VERIFICATION 
 

A significant part of any simulation is the verification and validation of the model. It is necessary to be sure that the 
model design (conceptual model) is transformed into a computer model with sufficient level of adequacy and accuracy. 
In this study, a sample model of a cantilever beam resonator was investigated numerically and experimentally. Three 
modifications of the sample cantilever resonator numerical model were explored: 

a. close-to-reality clamping conditions and the presence of the SiO2 substrate were taken into account. Full 
clamping and prescribed temperature (ambient temperature T0) boundary conditions were imposed on all cut-
boundaries that separate the computational model form the remaining body of the MEMS. The model included 
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the resonating structure and a certain part of the surrounding domain. The mechanically free surfaces of the 
model were assumed to be thermally isolated;  

b. the cantilever resonator was presented without the surrounding material. One end of the resonator was fully 
clamped, and fixed temperature boundary conditions were imposed at this end;  

c. the same model as in (b), only that the clamped end was thermally isolated.  
Table 1 presents the first modal frequency and Q- factor values of the three models of the SOI cantilever resonator at 
three different values of its length. Model modification (a) is close to the situations observed in a real MEMS. However, 
analytical formulae are able to evaluate the situations b and c only, therefore they are used for comparison of the results 
and model verification.  
The thermal boundary conditions influence the TED effects (i.e., the Q-factor values). Ideally clamped resonator models 
as in modifications (b) and (c) give higher natural frequencies values compared with ones provided by investigation of 
more realistic model (a). 
 
     Table 1. Modal frequency and Q-factor values of the sample cantilever resonator 
 

Length (m) Model a 
f (MHz), Q 

Model b 
f (MHz), Q 

Model c 
f (MHz), Q 

50.5 10−×  448.12MHz; 1.347 10×  
454.3MHz; 1.472 10×  454.3MHz; 1.074 10×  

51 10−×  413MHz; 4.13 10×  413.8MHz; 4.6 10×  413.8MHz; 4.6 10×  

52 10−×  53.358MHz; 1.612 10×
 

53.46MHz; 1.736 10×  53.46MHz; 1.549 10×
 

 
Fig 5 demonstrates the comparisson of the first modal frequency and Q-factor values obtained by using FE models 
against analytical evaluations. The model parameters were matched to the design data of poly-Si and poly-C resonators 
given in11. 
 

 
 

     Figure 5 Dependencies of Q-factor values determined by different vibration energy loss mechanisms against the resonant 
frequencies of poly-Si and poly-C cantilever resonators11; red dots indicate the numerical results obtained in this work by 
FE analysis for poly-Si cantilever resonatoprs of length 4 5 59 10 , 2 10 , 6.5 10m m m− − −× × × . 
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The resonators11, were fabricated and tested using piezoelectric and electrostatic actuation methods in low and high 
vacuum. Fig. 5 presents the dependencies of the Q-factor values determined by different vibration energy loss 
mechanisms against the resonant frequencies of poly-Si and poly-C 1µm thick cantilever beam resonators.  
The simulation results were also validated experimentally in7 by testing a cantilever beam resonator. The dependence of 
the numerically obtained values of the Q-factor of 1st damped mode against temperature is depicted in Fig. 6.  
 

  
 

     Figure 6. The dependence of numerically obtained values of the Q. 
 

It can be admitted that the qualitative agreement of numerical and experimental results is good (about 2500 drop of the 
Q-factor value over temperature range of 100 oC in both cases). However, the experimentally obtained Q-factor value is 
about 2700 higher over all temperature range. It seems reasonable to conclude that the difference of values is caused by 
other damping mechanisms not represented by purely TED model. Simultaneously, the obtained values proove the major 
signifficance of TED during vibrations of MEMS resonators, as the value of the Q-factor caused by TED is 
approximately 8000-10500 against 5500-8000, which is obtained if simultaneously other energy dissipation mechanisms 
are taken into account. 

 
 

4. CONCLUSIONS 
 

The Q-factor determined by thermal-elastic damping of micro-electro-mechanical resonators structures is a very 
important dynamic characteristic since it provides the upper limit of the Q-factor that is possible to achieve in a structure 
of given geometry and materials under an assumption that no internal friction and other sources of damping are present. 
A FEM computational model of longitudinal and bending vibrations of a beam resonator has been developed in order to 
analyze the eigenfrequencies and Q factors of test vehicle as well as real MEMS structures. Model verification has been 
performed by calculating modal properties of unsupported beam structures and comparing against the analytically 
obtained results recently published by other authors.  
The comparison of calculated and experimentally obtained resonant frequencies and Q-factor values indicated a good 
agreement of tendencies of change of the quantities against temperature. Both the experiments and calculations revealed 
almost linear decrease of the Q-factor against temperature. However, all experimental Q- factor values were lower than 
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theoretical ones. The shift of the values could be explained by other mechanisms of damping, which are not included into 
the thermal-elastic damping model. Their influence can be quantitatively evaluated by the said difference of the values. 
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